Topic: DNSSEC Ops Problem: SEP provisioning

Edward Lewis RIPE 59

Abstract

- An SEP is a DNSSEC public key that an administrator generates as part of the signing process
- An SEP is a DNSSEC public key that an an administrator receives as input, leading to DS records at a delegation
- There is no standard way to transfer the SEP despite many admin-admin environments

Why do we need a standard

- Today's ad-hoc situation isn't working
- The absence of a standard means the exchanges are informal
 - Informal does not scale
 - New players don't know where to start
 - Disenfranchised demographic stays that way
- Integrate as many players as possible, safely

A dilemma I live with

- A gTLD/ccTLD registry is expecting to rely on a EPP server as its provisioning ingress point
- A DNS managed service, not a registrar, does not operate a EPP client
- How do they talk to each other?
 - Even within the same organization?

Secure Entry Point (SEP)

- A Secure Entry Point is a key (KSK) that is intended to
 - Produce a DS record at the parent
 - Be configured in a Trust Anchor list
 - Be redistributed by a Trust Anchor Repository

Trust Anchor Repository

- TAR is a "security surrogate"
 - To a DNS administrator, it acts like the parent with respect to the SEP submission
 - To a DNS cache operator, it is a registry of security meta data (SEPs) with domain names
- A TAR is yet another form of a registry
 - Focus differs from a Domain Name Registry or RIR

SEP Lifecycle

- If an SEP was permanent we have no problem, but circumstances may require it be changed
- An SEP's "lifecycle" may include these stages
 - generation
 - preview (which might include emergency)
 - active
 - revoked (a la RFC 5011)
 - removed

Swapping an SEP

- One approach
 - Start with existing SEP, signed
 - Add new SEP to set, signed
 - Request a swap of DS records at parent or TAR
 - Confirm change, revoke (RFC 5011) the old
 - Remove the old SEP

8

Addendum

- There may be more than one SEP for a zone
 - For example, one per crypto-algorithm
 - For any operational reason
- The SEP change process presented here is just one model
 - This isn't an effort to pick one change process
 - The resulting provisioning process should accommodate many different change processes

The problem

- Middle step: Request a swap of DS records at parent and/or TAR
 - An external dependency
 - Few have specified how this will be done
 - There is RFC 4310 (EPP for DNSSEC) but that has limited scope
 - Test beds offer web pages; key scrapers pick
 - Building scripts for SEP change is not easy
- Needs to address: security, service level agreement

Why didn't RFC 5011 solve this?

- RFC 5011 "Automated Updates of DNSSEC Trust Anchors"
 - No mention of redistribution issues
 - No confirmation step (not needed because this wasn't meant for redistribution to other parties)
- Without confirmation, this doesn't provide the necessary feedback to the provisioning client

Visualizing the Problem

- The next five slides show these four steps
 - The child publishes a new SEP(-to-be)
 - The DS (new SEP) gets to the parent-TAR
 - Parent-TAR publishes the (Signed) DS
 - The child revokes the old SEP
- Hmm, before I said there were five steps
 - This focuses on step #2, #3, #4, dividing #3 in half

SEP: Pre-publish in DNS

SEP: Request DS swap

SEP: Request DS appear in parent

SEP: Parent-TAR signs

SEP: Confirm DS

SEP: Activate - revoke old that is

The basic steps

- The child publishes a new SEP
- The DS (new SEP) gets to the parent-TAR
- Parent-TAR publishes the (Signed) DS
- The child revokes the old SEP

- The above list does not addressing timing
- And it doesn't address including all parent & TARs

Shared Registry Model

- ICANN has specified a particular model
- Basic idea separation between registrant and registry, registrar is middle-man; no consideration was given to DNS operations
 - Good for business
 - Causes a barrier for DNS in-band updates
- But this is not the only way to do this, arguably not even the majority of environments

Generalized Provisioning Model

Remember, *Provisioning*

- When looking at this, remember we have to think provisioning (set-up) and not the lookup
 - This means that the parent has to get the data into the registry, not just a dynamic update
 - This does not preclude the use of the DNS protocol to pick up information
- That is why the validating cache using the parent-TAR DS record is not shown

Known requirements

Function

- Send new DNSKEY/DS to parent when it should replace existing; parent informs of completion; confirmation
- More general, we should use the traditional add/modify/ delete paradigm to accommodate more situations
- Security Pair-wise authentication, tamper-proof xfer
- Accountability Existing ops models need to be maintained
- Performance SLA for request and response
- Predictable E.g., Time to completion

Environments

- Registrant to Registry, each as own operator
- DNS outsourced by Registrant
- DNS outsourced by Registry
- Registrar in the middle (or chain of them)
- Registrar as DNS operator
- Registrant has registrar and separate operator
- EPP interface, SOAP/XML-based approaches

Related Problem

- Some DNS operators are signing all of their customer's zones
- When one of their customers transfers DNS operations (with or without changing "registrar"), the old DS record remains in the registry
- If the customer cannot remove the old DS, the zone will begin to fail DNSSEC validation

The next few slides are for ideas

- A few environments are sketched out
- Not complete, not particularly important
- But there to capture the wider issues involved

Fudging into an EPP SRM

As an addition to EPP SRM

No Registrar, outsourced DNS

Reverse Map

Unsigned Registry, multiple TAR(s)

Solutions are Tempting

- A few proposed solutions have been out there
- Some claim out for years
- But there's been no good cut at requirements

- When do we need a solution?
 - Of course now, but, let's solve the right problem

Ultimately

- A standard can't be mandated for all environments, but we need to have a general purpose solution
- Or we will continue to have issues
- Only a standard will grow

I'm Done

- This is the last slide
 - I'm not even going to "ask" if there are questions.
 - Discussions are bound to follow...maybe not right now in the meeting, but later