Falling Trees or If a DNS Server is Lame but Nobody Queries It, Should You Send an E-mail?

Shane Kerr <shane@isc.org> DNS Working Group, RIPE 59 Lisbon, 2009-10-08

Background

The RIPE NCC implemented a system which checks for lame DNS servers in the part of the reverse DNS tree they maintain.

I thought maybe we should check to see if lameness is a real problem.

The RIPE NCC asked me if I would be willing to investigate this.

Co-operation

- The RIPE NCC DNS department provided data & explanation
- OARC provided the system to hold the data & perform analysis

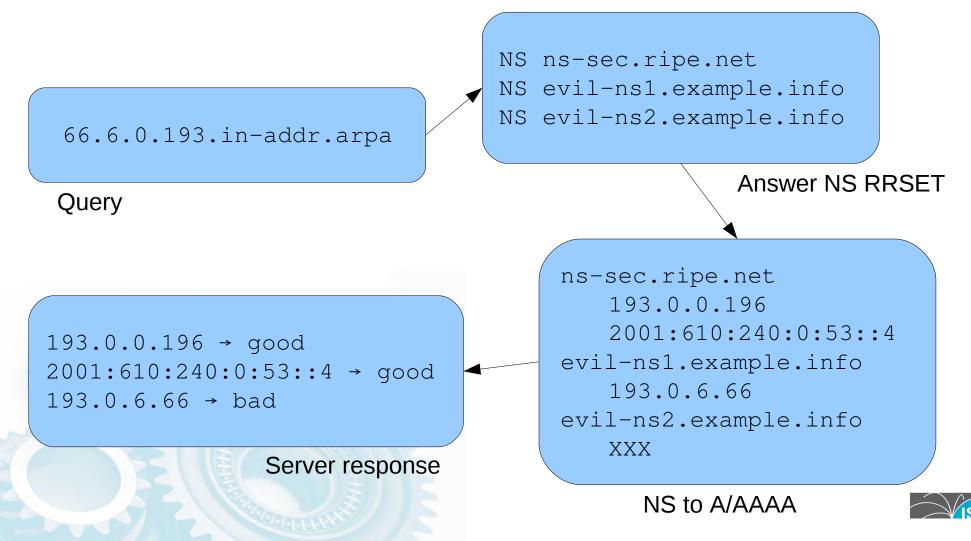
Methodology

- RIPE NCC runs checks

 Resolve NS to A/AAAA record
 SOA lookup of zone at A/AAAA
- RIPE NCC captures traffic
 - At RIPE NCC's master, ns-pri.ripe.net
 - For a set of 1-hour periods
- Compare actual traffic with lame zones

On the Checking of Traffic

- Parse each reply to get NS RRSET
- A very small mismatch with data sets
 - Lameness check run at different time than packet captures
 - 3 NS in an hour of packet captures
- If no NS, stop
 - NXDOMAIN, SOA query, errors, ...
- If NS, check for errors


Skinning Cats or, There's More Than One Way to Make a Lame DNS Server

1.The NS entry may not resolve to an A or AAAA record.

- example.org NS ns1.example.cmo NS ns2.exmaple.info
- 2.Nothing at the IPv4 or IPv6 address answers.
- ns.example.net A 0.0.1.16

Diagrammatically Explained *or* Explained Diagrammatically

Impact of Bad NS in RRSET

- Might be an immediate failure
 - ns.exxample.org gives NXDOMAIN
- Might be a set of timeouts
 - All NS in the RRSET may fail
- Current data does not distinguish

Chance of Using a Bad NS

- Two NS, one bad
 - 50% chance bad NS is chosen $1^{\mbox{\scriptsize st}}$
- Three NS, one bad
 - 33% chance bad NS is chosen $1^{\mbox{\scriptsize st}}$
- Three NS, two bad
 - 66% chance bad NS is chosen 1st
 - 50% chance bad NS is chosen 2nd
- And so on...

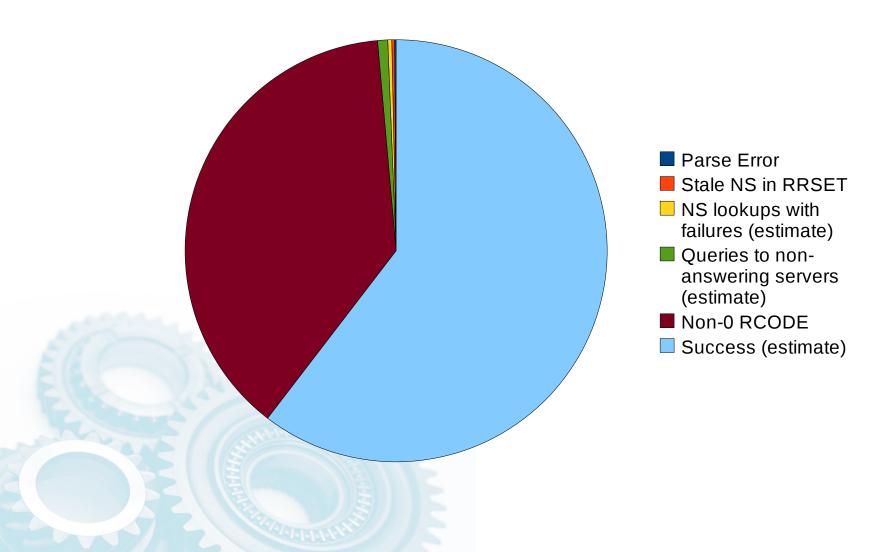
Impact of Bad Servers

- Server at IP address does not answer
- Set of timeouts
- Delay for the user!

 Logic about chance of using a bad server same as for using a bad NS...

Applicability Statement An Aside Before the Results

If anyone running a delegation-only server wants to perform similar analysis on their domains, you can have the code or work with me to perform similar analysis.


The Numbers

Total packets scanned:	16618986
Replies sent from server:	8309072
Unparsable replies:	9350
Packets with non-0 RCODE:	3165031
Packets with stale NS:	17839
Packets with NS in RRSET:	5096414

Estimate about 25030.984 lookups have NS lookup failures Estimate about 39303.618 NS lookup failures Estimate about 64100.080 lookups use non-answering IP Estimate about 77258.599 queries to non-answering IP

A Carta

Results

- 0.3% of queries had bad NS
- 0.8% of queries had an A/AAAA resulting in a DNS lookup failure
- About 1% of queries affected by lameness

Caveats

- Results do not account for caching
- Code based on IP, rather than IP+domain (oops)
- Effects of bad NS very uncertain
- Effects of bad servers slightly uncertain

Discussion

- But 5% of servers lame!
 - Unused lame servers don't get fixed
 - Used lame servers DO get fixed
- 1% is still a bit much...
 - DNSMON error rate for ns-pri was 0.3%
 - Average DNSMON error rate is 0.8%

Proposals

No more blanket e-mails
 Annual report to LIRs?
 Targeted e-mails to most-impacted users?

